
Vol.:(0123456789)

Journal of Imaging Informatics in Medicine 
https://doi.org/10.1007/s10278-024-01225-4

ORIGINAL PAPER

A Deep‑Learning‑Enabled Electrocardiogram and Chest X‑Ray 
for Detecting Pulmonary Arterial Hypertension

Pang‑Yen Liu1,2 · Shi‑Chue Hsing1 · Dung‑Jang Tsai3,5 · Chin Lin3,4,5 · Chin‑Sheng Lin1 · Chih‑Hung Wang6,7 · 
Wen‑Hui Fang3,8 

Received: 19 May 2024 / Revised: 24 July 2024 / Accepted: 31 July 2024 
© The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2024

Abstract
The diagnosis and treatment of pulmonary hypertension have changed dramatically through the re-defined diagnostic criteria 
and advanced drug development in the past decade. The application of Artificial Intelligence for the detection of elevated 
pulmonary arterial pressure (ePAP) was reported recently. Artificial Intelligence (AI) has demonstrated the capability to 
identify ePAP and its association with hospitalization due to heart failure when analyzing chest X-rays (CXR). An AI model 
based on electrocardiograms (ECG) has shown promise in not only detecting ePAP but also in predicting future risks related 
to cardiovascular mortality. We aimed to develop an AI model integrating ECG and CXR to detect ePAP and evaluate their 
performance. We developed a deep-learning model (DLM) using paired ECG and CXR to detect ePAP (systolic pulmonary 
artery pressure > 50 mmHg in transthoracic echocardiography). This model was further validated in a community hospital. 
Additionally, our DLM was evaluated for its ability to predict future occurrences of left ventricular dysfunction (LVD, ejec-
tion fraction < 35%) and cardiovascular mortality. The AUCs for detecting ePAP were as follows: 0.8261 with ECG (sen-
sitivity 76.6%, specificity 74.5%), 0.8525 with CXR (sensitivity 82.8%, specificity 72.7%), and 0.8644 with a combination 
of both (sensitivity 78.6%, specificity 79.2%) in the internal dataset. In the external validation dataset, the AUCs for ePAP 
detection were 0.8348 with ECG, 0.8605 with CXR, and 0.8734 with the combination. Furthermore, using the combination 
of ECGs and CXR, the negative predictive value (NPV) was 98% in the internal dataset and 98.1% in the external dataset. 
Patients with ePAP detected by the DLM using combination had a higher risk of new-onset LVD with a hazard ratio (HR) 
of 4.51 (95% CI: 3.54–5.76) in the internal dataset and cardiovascular mortality with a HR of 6.08 (95% CI: 4.66–7.95). 
Similar results were seen in the external validation dataset. The DLM, integrating ECG and CXR, effectively detected ePAP 
with a strong NPV and forecasted future risks of developing LVD and cardiovascular mortality. This model has the potential 
to expedite the early identification of pulmonary hypertension in patients, prompting further evaluation through echocardi-
ography and, when necessary, right heart catheterization (RHC), potentially resulting in enhanced cardiovascular outcomes.
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Introduction

Pulmonary hypertension (PH), a condition characterized by 
elevated pulmonary artery pressure (ePAP), affects 1% of the 
global population and rises to 10% among individuals aged 
65 and older [1]. Left untreated, pulmonary hypertension 
can lead to premature disability and death, primarily due to 
heart failure (HF). Over the past two decades, the field of 
pharmacological treatment for PH has undergone signifi-
cant transformation with the development of novel medica-
tions, including prostacyclin analogs, endothelin receptor 

antagonists, and phosphodiesterase 5 inhibitors [2]. These 
advancements have expanded the therapeutic options avail-
able to individuals with PH, significantly enhancing their 
quality of life. The condition is so insidious that there can 
be a delay of up to 2.25 years between the onset of symp-
toms and the diagnosis. At the time of presentation, 75% of 
patients already have advanced disease, classified under New 
York Heart Association (NYHA) functional class III or IV 
[3]. The current guidelines recommend that early detection 
of populations at risk is a crucial objective for improving 
outcomes. In cases where the prevalence rate is low and 
asymptomatic screening is not supported, population-based 
systemic strategies are not recommended. However, it is 
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suggested to apply early detection approaches in asympto-
matic at-risk individuals or symptomatic patients in dyspnea 
clinics to facilitate early diagnosis [4, 5].

Chest X-ray radiography (CXR) is a cost-effective and 
readily available diagnostic tool for screening patients with 
ePAP [6, 7]. Recent advancements in deep learning models 
(DLM) have enabled the use of CXR to identify elevated 
mean pulmonary arterial pressure (PAP) based on data from 
right heart catheter (RHC) procedures and assess the risk of 
hospitalization due to HF in PH cases [8]. A recent study 
has demonstrated that a model based on electrocardiograms 
(ECG) can effectively identify individuals with ePAP (PAP 
estimated to be > 50 mm Hg by transthoracic echocardiogra-
phy) and predict their future risk of cardiovascular mortality 
[9].

However, previous studies employing AI algorithms 
assessed pulmonary hypertension using a single diagnos-
tic tool. Our study aimed to utilize an integrated AI model, 
incorporating both ECG and CXR data, to identify patients 
with elevated pulmonary arterial pressure (ePAP) and to pro-
vide prognostic predictions regarding their outcomes.

Methods

Data Source

This study, with the institutional ethics committee approval 
from the Tri-Service General Hospital (C202105049), con-
ducted a retrospective investigation to develop a DLM and 
assess its performance through both internal and external 

validation. Patient consent was waived due to the retrospec-
tive nature of data collection. ECGs and CXRs were sourced 
from two hospitals, specifically an academic medical center 
(Hospital A) and a community hospital (Hospital B), cov-
ering the period from January 1, 2010, to April 30, 2021. 
Each ECG or CXR was annotated by the echocardiography 
within 7 days. Patients below 20 years of age were excluded 
from the study.

The ECG signal was recorded in a digital format with a 
sampling frequency of 500 Hz and 10 s for each lead. The 
CXR image was recorded in DICOM format with a resolu-
tion of more than 3000 × 3000 pixels.

The term “ePAP” was defined as systolic pulmonary 
artery pressure greater than 50 mmHg (indicated by a peak 
tricuspid regurgitation velocity greater than 3.4 m/s) through 
transthoracic echocardiography. This criterion indicates a 
high probability of PH in accordance with established stud-
ies and guidelines [4, 10, 11]. As illustrated in Fig. 1, we 
employed the following methods for developing and vali-
dating the DLM. We conducted a retrospective analysis 
involving patients who had at least one ECG or CXR within 
7 days of an echocardiography exam. In Hospital A, a total 
of 85,193 patients were included in the study. Out of these, 
42,499 patients were randomly assigned to the development 
set, which contributed 72,948 ECG records from 36,851 
patients and 110,396 CXR records from 33,493 patients for 
training the DLM for detecting ePAP. Furthermore, 17,182 
patients were randomly assigned to the tuning set, which 
provided 11,080 pairs of ECG and CXR to find hyperpa-
rameter optimization. The best combination of ECG and 
CXR models was determined by predictive value in each 

Fig. 1  Development, tuning, internal validation, and external valida-
tion sets generation and labeling of echocardiography. We designed 
a schematic for the creation and analysis of the data set to ensure its 

robustness and reliability during network development, tuning, and 
validation. Each patient’s data were exclusively assigned to one of the 
designated data sets, preventing any cross-contamination between sets



Journal of Imaging Informatics in Medicine 

models. Finally, 25,512 patients were randomly assigned to 
the internal validation set for conducting accuracy tests and 
follow-up analyses. In order to assess the generalizability of 
the DLM, we also gathered data from Hospital B, involving 
16,736 patients who met the same inclusion criteria as those 
from Hospital A, for external validation.

Data Annotation and Variables

In this study, the medical histories of the patients were deter-
mined based on the International Classification of Diseases, 
Ninth Revision and Tenth Revision (ICD-9 and ICD-10). 
Here is how each medical condition was classified:

• Diabetes mellitus (DM, ICD-9 codes 250.x and ICD-10 
codes E08.x to E13.x)

• Hypertension (HTN, ICD-9 codes 401.x to 404.x and 
ICD-10 codes I10.x to I16.x)

• Hyperlipidemia (ICD-9 codes 272.x and ICD-10 codes 
E78.x)

• Chronic kidney disease (CKD, ICD-9 codes 585.x and 
ICD-10 codes N18.x)

• Acute myocardial infarction (AMI, ICD-9 codes 410.x 
and ICD-10 codes I21.x)

• Stroke (ICD-9 codes 430.x to 438.x and ICD-10 codes 
I60.x to I63.x)

• Coronary artery disease (CAD, ICD-9 codes 410.x to 
414.x and 429.2, and ICD-10 codes I20.x to I25.x)

• Heart failure (HF, ICD-9 codes 428.x and ICD-10 codes 
I50.x)

• Atrial fibrillation (Af, ICD-9 codes 427.31 and ICD-10 
codes I48.x)

• Chronic obstructive pulmonary disease (COPD, ICD-9 
codes 490.x to 496.x and ICD-10 codes J44.9)

The primary outcomes of interest in this study were new-
onset left ventricular dysfunction (LVD, EF ≤ 35%) and car-
diovascular (CV) death. New-onset LVD was defined as the 
presence of at least one recorded estimated ejection frac-
tion (EF) of ≤ 35%. For CV mortality, the survival time was 
calculated with reference to the date of the patient’s ECG/
CXR. The patients’ status (whether deceased or alive) was 
determined through electronic medical records, which were 
regularly updated by each hospital. Data for patients who 
were still alive were censored at their last known hospital 
encounter to mitigate any potential bias arising from incom-
plete records.

Model Development and Statistical Analysis

We employed the developed DLM using ECG data to pre-
dict ePAP values, which was based on a convolutional 
neural network with 82 trainable layers as described in our 

previous study [12]. The training details of the DLM for 
CXR were adapted from a previous study, which utilized a 
121-layer DenseNet model [13]. To integrate the informa-
tion obtained from the DLM for ECG and CXR in predict-
ing ePAP, we utilized an eXtreme gradient boosting (XGB) 
model by predictive value in each models. These two DLMs 
were trained with a 32 batch size and used an initial learn-
ing rate of 0.001 using the Adam optimizer with standard 
parameters (β1 = 0.9 and β2 = 0.999). An oversampling 
process was implemented to ensure that the patients were 
adequately recognized. We sampled 16 cases and 16 controls 
in the development set for each batch. The learning rate was 
decayed by a factor of 10 each time the loss on the tuning 
set plateaued after an epoch. Early stopping was performed 
to prevent the networks from overfitting by saving the net-
work after every epoch and choosing the saved DLMs with 
the lowest loss on the tuning set. L2 regularization was also 
applied to avoid overfitting.

We utilized the receiver operating characteristic (ROC) 
curve and the area under the curve (AUC) to assess the per-
formance of the model. The operating point was selected 
based on the maximum Youden’s index for the detection 
of ePAP in the tuning set, and this same operating point 
was applied for both internal and external validation to 
calculate sensitivity, specificity, positive predictive value, 
and negative predictive value. Furthermore, we employed 
multivariable Cox proportional hazard models to examine 
the relationship between AI predictions and the occurrence 
of new-onset left ventricular dysfunction (LVD, EF ≤ 35%) 
and cardiovascular (CV) outcomes. Sex and age-adjusted 
hazard ratios (HRs) and their corresponding 95% confidence 
intervals (95% CIs) were used for comparison, and Kaplan‒
Meier curve analysis was employed for visualization. All 
statistical analyses were conducted using the R software 
environment, version 3.4.4, with a significance level set at 
p < 0.05.

Result

Diagnostic Performance of the AI Model for ePAP

Table 1 displays patient characteristics across the develop-
ment, tuning, internal validation, and external validation 
cohorts. The patients in the internal validation set were, on 
average, 65.2 ± 16.3 years old. 7.1% of the patients had ePAP 
(PAP > 50 mmHg), and 50.8% of the patients were male. 
In the external validation set, the average age of patients 
was 66.3 ± 17.2 years. 7.7% of the patients had ePAP, and 
49.9% of the patients were male. The average pulmonary 
arterial systolic pressure in the “Internal validation” set is 
slightly lower at 32.9 ± 10.9 mmHg, while in the “External 
validation” set, it is slightly higher at 33.3 ± 11.1 mmHg. 
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However, these differences are not statistically significant. 
In the “External validation” set, there are significantly 
higher prevalences of diabetes mellitus (DM), hyperlipi-
demia, hypertension, coronary artery disease (CAD), and 
chronic obstructive pulmonary disease (COPD) compared 
to the “Internal validation” set. These differences suggest 
variations in the prevalence of certain medical conditions 
between the internal and external validation sets.

Figure 2 illustrates DLM predictions based on ECG, 
CXR, and combination to detect ePAP in both the internal 
validation and external validation sets. ROC curves were 
generated, presenting sensitivity, specificity, positive pre-
dictive value (PPV), and negative predictive value (NPV). 
The AUCs for detecting ePAP were 0.8261 by ECG, 0.8525 
by CXR, and 0.8644 by combination, respectively, in the 
internal validation set. In the external validation set, the 
AUCs for detecting ePAP were 0.8348 by ECG, 0.8605 by 
CXR, and 0.8734 by combination, respectively. The DLM 
exhibited ePAP detection through ECGs with a sensitivity 
of 76.6%, specificity of 74.5%, positive predictive value of 
18.8%, and high negative predictive value of 97.6% in the 

internal validation cohort. The DLM for detecting ePAP by 
CXR achieved a sensitivity of 82.8%, a specificity of 72.7%, 
and a notably high negative predictive value of 98.2% in the 
internal validation cohort. The combination of ECGs and 
CXR achieved a sensitivity of 78.6%, a specificity of 79.2%, 
and a negative predictive value of 98% in the internal vali-
dation cohort for detecting ePAP. In the external validation 
cohort, the Diagnostic Learning Model (DLM) achieved the 
following results for detecting elevated pulmonary arterial 
pressures (ePAPs): ECG exhibited a sensitivity of 78.9%, 
specificity of 73.7%, PPV of 20%, and a high NPV of 97.7%. 
CXR achieved a sensitivity of 85.4%, a specificity of 71.8%, 
and a NPV of 98.3%. The combination of ECG and CXR 
yielded a sensitivity of 81.6%, a specificity of 78.1%, a PPV 
of 23.8%, and a NPV of 98.1%.

In Fig. 3, the AI diagnostic performance in the combined 
use of ECG and CXR was strong in the internal validation 
set across different genders and various comorbidities. How-
ever, in specific subgroups such as the elderly (≥ 65-year-
old), those with chronic kidney disease (CKD), HF, and Af, 
the diagnostic performance (measured by the AUC) in the 

Table 1  Patient characteristics 
across the development, tuning, 
internal validation, and external 
validation cohorts

Abbreviations: PASP pulmonary artery systolic pressure, BMI body mass index, DM diabetes mellitus, 
HTN hypertension, HLP hyperlipidemia, CKD chronic kidney disease, AMI acute myocardial infarction, 
CAD coronary artery disease, HF heart failure, Afib atrial fibrillation, COPD chronic obstructive pulmo-
nary disease

Development Tuning Internal validation External validation

ECG subset CXR subset

PASP (mmHg) 33.8 ± 11.9 35.5 ± 13.0 33.0 ± 11.0 32.9 ± 10.9 33.3 ± 11.1
 < 30 mmHg 29,374 (40.3%) 40,024 (36.3%) 4660 (42.1%) 7009 (42.4%) 7001 (41.8%)
30–39 mmHg 27,365 (37.5%) 38,208 (34.6%) 4241 (38.3%) 6333 (38.3%) 6265 (37.4%)
40–49 mmHg 9721 (13.3%) 18,513 (16.8%) 1386 (12.5%) 2000 (12.1%) 2178 (13.0%)
50–59 mmHg 3755 (5.1%) 7758 (7.0%) 468 (4.2%) 697 (4.2%) 761 (4.5%)
 ≥ 60 mmHg 2733 (3.7%) 5893 (5.3%) 325 (2.9%) 485 (2.9%) 531 (3.2%)
Demography
Gender (male) 38,798 (54.9%) 62,515 (56.6%) 5814 (52.5%) 8399 (50.8%) 8357 (49.9%)
Age (years) 65.7 ± 17.0 68.4 ± 16.1 65.2 ± 16.3 65.2 ± 16.2 66.3 ± 17.2
Height (cm) 162.2 ± 9.1 161.9 ± 9.0 161.9 ± 9.0 161.7 ± 9.0 162.0 ± 9.0
Weight (kg) 64.7 ± 14.2 63.2 ± 14.1 64.2 ± 14.0 64.3 ± 14.1 64.6 ± 14.1
BMI (kg/m2) 24.5 ± 4.4 24.0 ± 4.5 24.5 ± 4.4 24.5 ± 4.4 24.5 ± 4.4
Disease history
DM 19,959 (28.2%) 34,486 (31.2%) 2512 (22.7%) 3688 (22.3%) 5072 (30.3%)
HTN 6702 (9.5%) 9737 (8.8%) 609 (5.5%) 919 (5.6%) 1565 (9.4%)
HLP 24,267 (34.3%) 33,148 (30.0%) 2907 (26.2%) 4384 (26.5%) 7160 (42.8%)
CKD 18,947 (26.8%) 36,295 (32.9%) 1903 (17.2%) 2804 (17.0%) 3530 (21.1%)
AMI 5771 (8.2%) 6864 (6.2%) 425 (3.8%) 625 (3.8%) 522 (3.1%)
Stroke 11,941 (16.9%) 22,792 (20.6%) 1664 (15.0%) 2398 (14.5%) 3129 (18.7%)
CAD 23,244 (32.9%) 30,747 (27.9%) 2424 (21.9%) 3595 (21.8%) 5168 (30.9%)
HF 12,285 (17.4%) 24,126 (21.9%) 1112 (10.0%) 1580 (9.6%) 2408 (14.4%)
Afib 6601 (9.3%) 10,298 (9.3%) 590 (5.3%) 852 (5.2%) 1274 (7.6%)
COPD 10,854 (15.4%) 19,422 (17.6%) 1349 (12.2%) 2027 (12.3%) 3796 (22.7%)
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DLM predictions based on ECG, CXR, and their combi-
nation was significantly reduced in the internal validation. 
Additionally, in cases of chronic obstructive pulmonary 
disease (COPD), the diagnostic performance in CXR-based 
DLM predictions was decreased. Elderly (≥ 65-year-old), 
CKD, DM, HTN, stroke, HF, Af, and COPD were signifi-
cantly association with a reduction of the diagnostic per-
formance in the DLM predictions based on ECG, CXR, 
and their combination in the external validation. In cases of 
CAD, the diagnostic performance in DLM predictions by 
ECG and combination was decreased.

We conducted stratified analyses to compare the AUC in 
the detection of ePAH using DLM predictions based on ECG, 
CXR, and their combination. These analyses were stratified 
by demographic characteristics and the medical history of the 
populations. *p < 0.05; **p < 0.01; ***p < 0.001.

Long‑Term Cardiovascular Outcome Predicted 
by Multimodal AI in Patients Initially Without ePAP

New onset of left ventricular dysfunction (LVD, EF ≤ 35%) 
was analyzed for patients in 3 subsets (AI-ECG, AI-CXR, 

Fig. 2  The ROC curve of DLM 
predictions based on ECG, 
CXR, and combination to detect 
ePAP. The cut-off point was 
chosen based on the maximum 
value of Yunden’s index in the 
tuning set and indicated by 
a circle mark. Subsequently, 
the area under the ROC curve 
(AUC), sensitivity (Sens.), 
specificity (Spec.), positive 
predictive value (PPV), and 
negative predictive value (NPV) 
were calculated based on this 
selected cut-off point
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and AI-ECG + CXR) in Fig.  4. Of the 10,124 patients 
labeled by the AI-ECG model as having a normal PAPs who 
had a documented normal PAPs and normal EF by TTE 
within a 1-week window (Fig. 4, left upper, the cure labeled 
negative, AI-ECG-predicted non-ePAPs), the cumulative 
incidence of new onset of LVD at each time period were 
1.8% in 2 years, 2.4% in 4 years, 3.1% in 6 years, and 3.4% 
in 8 years. By contrast, for the 2601 patients labeled by the 
AI-ECG as having ePAP but with normal PAPs and nor-
mal EF by TTE (the curve labeled positive, AI-ECG-pre-
dicted ePAP), the cumulative incidence of LVD were 9.4% 
in 2 years, 11.5% in 4 years, 16.2% in 6 years, and 22.2% 
in 8 years. This marked difference was observed with an 
adjusted hazard ratio (HR) of 3.91 (95% CI: 3.09–4.93). Of 
the 9859 patients labeled by the AI-CXR model as having 
normal PAPs who had documented normal PAPs and normal 
EF by TTE (AI-CXR-predicted non-ePAP), the cumulative 
incidence of LVD were 1.8% in 2 years, 2.5% in 4 years, 
3.4% in 6 years, and 3.7% in 8 years. By contrast, for the 

2866 patients labeled by the AI-CXR as having ePAP but 
with normal PAPs and normal EF by TTE (AI-CXR-pre-
dicted ePAP), the cumulative incidence of LVD were 8.5% 
in 2 years, 10% in 4 years, 13.6% in 6 years, and 17.9% 
in 8 years. This marked difference was observed with an 
adjusted hazard ratio (HR) of 3.06 (95% CI: 2.41–3.88). Of 
the 10,735 patients labeled by the combination of ECG and 
CXR as having normal PAPs who had documented normal 
PAPs and normal EF by TTE (AI-ECG + CXR-predicted 
non-ePAPs), the cumulative incidence of LVD were 1.8% 
in 2 years, 2.5% in 4 years, 3.4% in 6 years, and 3.6% in 
8 years. By contrast, for the 1990 patients labeled by the AI-
ECG + CXR as having ePAP but with normal PAP and nor-
mal EF by TTE (AI-CXR-predicted ePAP), the cumulative 
incidence of LVD were 11.9% in 2 years, 13.8% in 4 years, 
20.1% in 6 years, and 29% in 8 years (Fig. 4, left lower). This 
marked difference was observed with an adjusted hazard 
ratio (HR) of 4.51 (95% CI: 3.54–5.76). The hazard ratio 
was the largest in the AI-ECG + CXR subset.

Fig. 3  The association of subgroups and the DLM diagnostic performance
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Cardiovascular mortality was analyzed for patients in 
3 subsets (AI-ECG, AI-CXR, and AI-ECG + CXR). Dur-
ing the 8-year follow-up, cumulative incidence analysis 
showed that in comparison to patients labeled as non-ePAP 
by the AI model, those stratified as ePAP were associated 
with higher cardiovascular mortality. The hazard ratios 
with 95% confidence intervals were 5.62 (4.29–7.35), 
5.42 (4.11–7.15), and 6.08 (4.66–7.95) in AI-ECG, AI-
CXR, and AI-ECG + CXR subset, respectively. The hazard 
ratio was the largest in the AI-ECG + CXR subset, and 
the prediction of 2-year cardiovascular mortality from 
multimodal AI was a significant discriminator of long-
term cardiovascular mortality for up to 8 years after the 
initial ECG and CXR (Fig. 4; the second row from the 

left). Similar prediction and performance for LVD and 
cardiovascular mortality were replicated in the external 
cohort. The hazard ratios for new onset of left ventricular 
dysfunction (LVD, EF ≤ 35%) with 95% confidence inter-
vals were 3.33 (2.72–4.07) in the AI-ECG subset, 2.51 
(2.04–3.09) in the AI-CXR subset, and 3.22 (2.60–3.98) 
in the AI-ECG + CXR subset, respectively. The hazard 
ratios for subsequent cardiovascular mortality, with 95% 
confidence intervals, were 4.03 (3.43–5.64) in the AI-ECG 
subset, 3.26 (2.55–4.17) in the AI-CXR subset, and 4.53 
(3.54–5.79) in the AI-ECG + CXR subset, respectively. 
Notably, the largest hazard ratio was observed in the AI-
ECG + CXR subset.

Fig. 4  Long-term incidence of developing new-onset left ventricu-
lar dysfunction (LVD, EF ≤ 35%) and cardiovascular (CV) death, 
stratifying patients based on the presence of ePAP as determined by 
DLM. These analyses were performed in both the internal and exter-

nal validation sets. It is important to note that the analysis for new-
onset LVD only included patients with an initial EF > 50%. The table 
presents information on the at-risk population and cumulative risk for 
specific time intervals within each risk stratification
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Discussion

In the present study, the multimodal AI model recaptured 
patients with ePAP and predicted their future risk for devel-
oping new-onset LVD and cardiovascular mortality. Com-
bination of ECG and CXR performed more powerfully than 
either in diagnosis, but not overt. In the internal validation 
set, the AUCs for detecting ePAP were 0.8261 for ECG, 
0.8525 for CXR, and 0.8644 for the combination of both. 
In the external validation set, the AUCs for detecting ePAP 
were 0.8348 for ECG, 0.8605 for CXR, and 0.8734 for the 
combination. Furthermore, the combination method dem-
onstrated a high NPV, reaching 98% in the internal valida-
tion set and 98.1% in the external validation set. Due to the 
high negative predictive value, the utilization of DLM may 
prompt further evaluation with echocardiography and lead 
to a reduction in the number of unnecessary RH procedures. 
On the other hand, the diagnostic performance was adversely 
affected by certain comorbidities such as advanced age, 
CKD, HF, and Af. In patients who were initially found to 
have normal LV systolic function, those predicted as positive 
for ePAP by the combination method were independently 
associated with the development of future LVD (EF ≤ 35%) 
with a HR of 4.51 (95% CI: 3.54–5.76) in the internal data-
set. Additionally, they were also independently associated 
with a higher risk of cardiovascular mortality (HR: 6.08, 
CI: 4.66–7.95) at an 8-year follow-up. The AI model identi-
fied ECG/CXR abnormalities and thus predicted LVD and 
cardiovascular mortality. The AI-ECG + CXR was more 
powerful than AI-ECG or AI-CXR, but not overt.

This model has the potential to be valuable in clinical 
settings for screening patients with pulmonary hyperten-
sion due to its high NPV, allowing for early intervention 
and improved long-term cardiovascular outcomes.

Detecting PH in its early stages and initiating timely 
treatment can significantly enhance survival rates [14, 15]. 
However, traditional detection methods such as laboratory 
data, ECG, CXR parameters (such as widening of pulmo-
nary hilum, projection of the right side of the heart border, 
the ratio of these parameters to the chest diameter), and 
physical examinations have shown limited effectiveness. 
The AUC for the parameters used to detect PH in a CXR 
study did not show significant differences [7]. Traditional 
ECG findings used to identify ePAP were reported as 
unreliable screening tools due to their low sensitivity [16, 
17], a finding echoed in studies of pulmonary function and 
laboratory data [18, 19]. Therefore, screening algorithms 
incorporating clinical characteristics and a variety of tests 
were employed to enhance the likelihood of detecting PH, 
guided by reliable expert opinions [19, 20].

In comparison to these tests, new approaches with AI 
models demonstrated a significantly higher likelihood of 

detecting PH. An AI study showed that standard CXR 
effectively identifies ePAP and predicts future HF [8]. 
AUC by the AI algorithm was lower than our DLM (0.71 
vs 0.8525 in internal validation and 0.8605 in external 
validation). But different pulmonary hypertension defini-
tion was used (PAP > 20 mmHg by RHC). Those predicted 
as AI-positive for ePAP in that study had a two-fold higher 
risk of future HF admission than those predicted as AI-
negative. Our results are consistent with this, affirming the 
role of AI in predicting heart failure. Besides CXR, ECG 
is a cost-effective and commonly used diagnostic tool. An 
AI ECG-based cohort study demonstrated high accuracy 
in ePAP through echocardiography, with an AUC of 0.859 
in internal and 0.902 in external validation [21]. Our study 
achieved an AUC closely matching these results. And 
AI defined higher risk patient had a significantly higher 
chance of developing PH than those in the low-risk group 
(31.5% vs 5.9%) during the follow-up period [21].

Moreover, a recent study utilizing an AI algorithm 
with ECG data, which yielded an AUC of 0.88 for ePAP 
through echocardiography, revealed that patients identified 
by the AI as having ePAP experienced a higher cardiovas-
cular mortality rate during a 6-year follow-up (HR: 3.69, 
95% CI: 3.27–4.17) [9]. Our study not only demonstrated 
the predictive value of cardiovascular mortality using 
DLM applied to ECG (HR: 5.62, 95% CI: 4.29–7.35) but 
also using CXR (HR: 5.42, 95% CI: 4.11–7.15), as well 
as a combination of CXR and ECG (HR: 6.08, 95% CI: 
4.66–7.95) for DLM-predicted positive ePAP. The pres-
ence of comorbidities, such as advanced age, CKD, HF, 
and Af, was associated with reduced diagnostic perfor-
mance in the DLM when using ECG for ePAP detection. 
This suggests a potential interference of ECG changes 
from these conditions in the neural network’s deep learn-
ing process. Similarly, the presence of COPD was linked to 
reduced diagnostic performance in DLM when using CXR 
for ePAP detection, likely due to the pathologic effects of 
COPD on CXR-based diagnosis.

In summary, traditional detection methods are inad-
equate for effectively predicting PH. However, with the 
advent of AI, both CXR and ECG can be used as training 
materials for models to achieve high accuracy. Our study, 
combining CXR and ECG to train AI, has yielded better 
results and demonstrated superior performance in predict-
ing heart failure. Our model demonstrated a high NPV 
of approximately 98%. This indicates that the diagnostic 
performance across modalities is clinically similar and 
reliable as a screening tool. Notably, prior to our study, 
there was limited data on the prediction of cardiovascular 
mortality using AI with CXR for ePAP assessment [8]. In 
our study, we provide evidence that AI applied to CXR 
reliably predicted cardiovascular outcomes (HR: 5.42, 95% 
CI: 4.11–7.15).
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Study Limitations

Firstly, the retrospective design of our study emphasizes 
the importance of conducting further prospective studies to 
assess the clinical feasibility of this method in real-world 
settings.

Secondly, while ePAP > 50 mmHg by transthoracic echo-
cardiography indicates a high probability of pulmonary 
hypertension (PH) according to established guidelines [5, 
10], it is important to note that right heart catheterization 
remains the definitive diagnostic tool for PH and was not 
utilized in this study. The reliance on transthoracic echocar-
diography as an ePAP marker, without invasive right heart 
catheterization for a definitive PH diagnosis, may limit the 
clinical feasibility of this method. And our study did not dis-
tinguish between specific types of pulmonary hypertension. 
The ability to classify these types is crucial for determin-
ing appropriate therapeutic strategies. However, our study’s 
ability to yield a high NPV suggests that it could potentially 
serve as a cost-effective screening tool to detect PH, which 
can then prompt further evaluation with echocardiography 
and RHC when necessary.

Thirdly, our patient was derived from Taiwan. Given that 
ECG characteristics can vary across different racial groups 
[22], it is essential to validate these results in diverse racial 
and geographical contexts.

Lastly, the opacity of current DLMs presents methodolog-
ical limitations. Human experts currently lack the capacity 
to diagnose ePAP through ECG and CXR. To enhance the 
transparency of DLMs, future studies should investigate the 
correlation and interpretability of ECG features in relation.

Conclusion

In this study, we demonstrated that DLM applied to dif-
ferent modalities could effectively identify patients with 
elevated ePAP, achieving high AUC and NPV. This innova-
tive approach provides a practical and cost-effective means 
to assist physicians to recognize individuals at risk of PH. 
Additionally, it has the potential to predict their future risk 
of developing HF and experiencing cardiovascular mortality. 
Lastly, the diagnostic performance and predictive capabili-
ties of DLM are clinically similar across modalities, includ-
ing ECG, CXR, and their combination.
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